A Y aud [ | l ADVANCING
AT e science

Woater Resources Research

RESEARCH ARTICLE
10.1029/2020WR027639

Key Points:

« Uncertainty in simulated
groundwater storage change is a
result of topographic redistribution
of uncertainty in precipitation
forcing

« Subsurface flow pathways in both
soil and deeper bedrock control
watershed response to variable
precipitation input

« Merging multiple precipitation data
sets provides better results than
merging simulated fluxes, due to
high model sensitivity to changes in
precipitation

Supporting Information:
« Supporting Information S1

Correspondence to:
A. P. Schreiner-McGraw,
adampschreiner@gmail.com

Citation:

Schreiner-McGraw, A. P., & Ajami, H.
(2020). Impact of uncertainty in
precipitation forcing data sets on the
hydrologic budget of an integrated
hydrologic model in mountainous
terrain. Water Resources Research, 56,
€2020WR027639. https://doi.org/
10.1029/2020WR027639

Received 1 APR 2020
Accepted 25 OCT 2020
Accepted article online 29 OCT 2020

©2020. American Geophysical Union.
All Rights Reserved.

Impact of Uncertainty in Precipitation Forcing Data Sets
on the Hydrologic Budget of an Integrated Hydrologic
Model in Mountainous Terrain

Adam P. Schreiner-McGraw'  and Hoori Ajami’

1Department of Environmental Sciences, University of California, Riverside, CA, USA

Abstract Precipitation is a key input variable in distributed surface water-groundwater models, and its
spatial variability is expected to impact watershed hydrologic response via changes in subsurface flow
dynamics. Gridded precipitation data sets based on gauge observations, however, are plagued by
uncertainty, especially in mountainous terrain where gauge networks are sparse. To examine the
mechanisms via which uncertainty in precipitation data propagates through a watershed, we perform a
series of numerical experiments using an integrated surface water-groundwater hydrologic model, ParFlow.
CLM. The Kaweah River watershed in California, USA, is used as our virtual catchment laboratory to
characterize watershed response to variable precipitation forcing from headwaters to groundwaters. By
applying the three-cornered hat method, we quantify the spatially distributed uncertainty in four publically
available precipitation forcing data sets and their simulated hydrology. Simulations demonstrate that
uncertainty in the simulated groundwater storage is primarily a result of topographic redistribution of
uncertainty in precipitation forcing. Soil water redistribution is the primary pathway that redistributes
uncertainty downslope. We also find that topography exerts a larger impact than variable subsurface
parameters on propagating uncertainty in simulated fluxes. Finally, we find that improvement in model
performance metrics is higher for a single simulation forced with the mean precipitation from the available
data sets than the averaged simulated results of separate simulations forced with each data set. Results
from this study highlight the importance of topography-moderated flow through the critical zone in shaping
the groundwater response to climate variability.

1. Introduction

Precipitation is the primary driver of the terrestrial hydrologic cycle. Historically, precipitation estimates
have been derived from ground-based gauges at point locations. However, watershed scale studies require
spatially distributed precipitation inputs over large regions at high temporal resolution (minutes to daily).
Several techniques to extrapolate precipitation from gauge-based observation networks to gridded data sets
at continental scales have been proposed and widely adopted (Daly et al., 1994; Thornton et al., 1997). It is
well known that point-scale gauge measurements are prone to uncertainty, which is most commonly
caused by gauge undercatch (Groisman & Legates, 1994; Pollock et al., 2018). Additional uncertainty is
introduced by interpolation algorithms that extrapolate ground-based precipitation observations to gridded
data sets covering large domains. As a result, precipitation uncertainty increases from 5-16% to 33-65% of
rainfall rates with increasing scales from gauges to interpolated gridded data sets (scales of 10° to 10* m)
(McMillan et al., 2012).

Advances in remotely sensed precipitation products can overcome the observational gap of in situ precipita-
tion data sets. However, data quality challenges still remain, particularly in the mountain catchments that
provide 20-90% of discharge (Viviroli & Weingartner, 2004). While satellite-based remote sensing products
are being improved with higher resolutions, they currently lack sufficient spatiotemporal resolution and
have limited accuracy in quantifying solid-phase precipitation (Lettenmaier et al., 2015). Ground-based
radar measurements are also limited by terrain blockage in mountainous regions (Westrick et al., 1999).
As a result, precipitation observations in mountainous terrain are largely limited to in situ precipitation
gauges despite uncertainty in gauge-based gridded data sets.

Previous evaluations of gridded precipitation data sets found significant uncertainty in precipitation esti-
mates at high elevations and that uncertainty estimates from data intercomparisons are lower than the
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true uncertainty (Henn et al., 2018; Lundquist et al., 2015). These shortcomings are caused by sparse
gauge networks, due to limited accessibility and infrastructure (Lundquist et al., 2003), or significant
underestimation of snow (Rasmussen et al., 2012). In addition to precipitation measurement challenges
at a single location, accuracy of gridded data sets depends on extrapolation algorithms across complex ter-
rain, the use of different input gauges, and how snow measurements are considered (Daly et al., 1994;
Thornton et al., 1997). Thus, there is considerable uncertainty in the volume and spatial distributions
of precipitation data sets built from gauge observations, especially in the high-elevation regions where
greater precipitation occurs. This uncertainty in precipitation data sets creates challenges for simulating
water balance partitioning of mountain catchments where precipitation forcing has traditionally been
treated as truth.

Despite the substantial uncertainty in precipitation inputs, hydrologic models have historically been run
with deterministic inputs that do not account for the uncertainties in precipitation (Krzysztofowicz,
2001). With the development of Markov chain Monte Carlo (MCMC) methods and advances in computing
power, Bayesian inference or ensemble-based approaches have become popular methods to quantify uncer-
tainty in hydrologic modeling caused by uncertain model inputs, parameters, or structure (Forman
et al., 2008; Hong et al., 2006; Kavetski et al., 2006; Tang et al., 2019). The computational time of MCMC
methods limits their application, however, when distributed process-based hydrologic models are utilized
at large catchment scales. Process-based models are often preferable to empirical or semidistributed
models in simulating watershed response to changes in climate or land cover as they capture nonstationar-
ity (e.g., Deb et al., 2019). Although assessing the impact of uncertainty in precipitation on groundwater
resources has received less attention, a plethora of studies have investigated the impact of precipitation
inputs on streamflow (Forman et al., 2008; Fu et al., 2011; Lobligeois et al., 2014; Mizukami et al., 2014,
2016; Moreno et al., 2012; Nic6tina et al., 2008) with a common goal of finding an optimum grid resolution
to represent streamflow generation processes and routing. Previous work suggests that using the mean of
multiple precipitation data sets is the best approach to accurately represent spatially distributed precipita-
tion (Clark & Slater, 2006; Cornes et al., 2018). It has been suggested that running separate simulations with
each data set and averaging the simulated streamflow may improve results (Jiang et al., 2012; Zhu
et al., 2019). However, there is limited evidence to confirm that these approaches improve simulated sub-
surface hydrology.

The response of rainfall-runoff models to spatial precipitation variability is dependent on the runoff gener-
ating mechanism. Infiltration-excess-type models are seen to be more sensitive to precipitation inputs than
saturation-excess-type models (Koren et al., 1999; Milly & Eagleson, 1988; Winchell et al., 1998). This
response suggests that the subsurface hydrologic processes play an important role in determining model
response to variable precipitation inputs. It has been shown that precipitation input resolution can impact
groundwater levels at local scales without any impact on streamflow (Fu et al., 2011). The response of a
hydrologic system to variable precipitation input is complex, and in order to disentangle this complexity,
consideration of the integrated hydrologic system from land surface to the subsurface is necessary.
Integrated hydrologic models simulate both the surface water system and the groundwater system, as well
as their interactions. Few of the mentioned modeling studies examined the impact of precipitation uncer-
tainty on the vadose zone and groundwater system.

In this study, we use an integrated groundwater-land surface model, ParFlow.CLM (Kollet & Maxwell,
2008), to investigate how uncertainty in precipitation forcings propagates from precipitation to groundwater.
Due to the lack of a dense precipitation gauge network in the mountainous study domain, we quantify the
uncertainty between four common gridded precipitation data sets, Parameter-elevation Regressions
on Independent Slopes Model (PRISM) (Daly et al., 1994), Daymet (Thornton et al., 1997), Gridmet
(Abatzoglou, 2013), and a downscaled version of the North American Land Data Assimilation System
(NLDAS-2) (Pan et al., 2016). Then we force a hydrologic model with these data sets to examine how this
uncertainty propagates through the hydrologic system, with a focus on changes to groundwater. This study
is guided by the following fundamental questions: (1) How does uncertainty in forcing data sets propagate
from precipitation to groundwater? (2) Does the subsurface parameterization alter the propagation of uncer-
tainty from precipitation to groundwater? and (3) Does a single simulation with the mean of the uncertain
precipitation data sets perform better than running a separate simulation with each data set and averaging
the simulated results?
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Figure 1. (a) Study site location. (b) The 30-m digital elevation model of the Kaweah River Watershed model domain, the
watershed boundary, and stream network as formed by ParFlow.CLM simulations. The Central Valley and Mountain
Block provinces are defined from a geologic map of the region. The location of the Kaweah Terminus full natural

flow estimates is shown as well as the Terminus Watershed draining to this point. USGS stream gauge locations are also
shown. The station IDs are as follows: 11208730, 11206820, and 11208600 for Sites 1, 2, and 3, respectively.

To address the research questions, we perform three numerical experiments using ParFlow.CLM. These
experiments assess the propagation of uncertainty from precipitation to groundwater by forcing the model
with four gridded precipitation products (Experiment 1) or changing the subsurface structure to assess pre-
cipitation uncertainty impacts (Experiment 2). In Experiment 3, the impact of averaging the precipitation
forcings of the four input data sets for each grid cell at a daily scale is compared against the simulated hydrol-
ogy from each individual data set in Experiment 1.

2. Methods
2.1. Study Site

The study site is the Kaweah River watershed located in the southern part of the Sierra Nevada Range and
Central Valley of California (Figure 1a). The regional topography is dominated by the north-south trend-
ing granitic mountain block of the Sierra Nevada (Jennings, 1977). The highest elevations, exceeding
4,000 m, are in the eastern portion of the range where the mountain block was uplifted the highest. A
complex assemblage of landforms combines to create the alluvial fan that erodes from the mountain block
(Olmsted & Davis, 1961). This piedmont slope is composed of loosely consolidated sediments and gradu-
ally transitions to the flat basin floor of the Central Valley (Davis et al., 1959). The Central Valley portion
of the study domain is primarily composed of interbedded sand and silt layers and is a highly productive
groundwater aquifer (Faunt, 2009). The low-elevation valley floor has been subject to extensive develop-
ment and human settlement (Figure 1b), and the natural flow of water is highly disrupted by a series of
dams, canals, and wells. The climate is a Mediterranean climate with warm, dry summers and cool, wet
winters. The mean annual precipitation ranges from 193 to 1,443 mm, roughly following the elevation gra-
dient with orographic effects increasing precipitation at higher elevations (Figure 2). The land cover in the
model domain contains a sequence of grassland and oak savannah grading into shrublands then conifer
forests as elevation increases and finally becoming grassland and bare ground at elevations above the tree
line (USDA-NASS, 2017).

2.2. Model Forcing and Validation Data Sets

For model forcing, we use four precipitation data sets with at least daily temporal resolution and a spatial
resolution of 4 km or higher across the study domain, Daymet, Gridmet, PRISM, and a downscaled version
of NLDAS-2. All of the data sets are based on gauge measurements that are extrapolated to a uniform grid.
The PRISM data set uses over 13,000 observation stations across the continental United States and builds a
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Figure 2. (a) The cumulative sum of the WY2016 daily mean precipitation for the model domain for each of the four
gridded data sets. Spatial maps of the total annual precipitation applied to each model grid cell for (b) downscaled
NLDAS-2, (c) PRISM, (d) Gridmet, and (e) Daymet forcing data sets. The Kaweah River watershed boundary is displayed
with a black line.

spatial data set based on a climate-elevation regression for each DEM grid cell at a 4-km resolution (Daly
et al., 2008). The observational stations used to build this regression for each grid cell are determined based
on the location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric layer, topo-
graphic position, and orographic effectiveness of the terrain (Daly et al., 1994). The Daymet data set is con-
structed in a similar manner with a focus on extrapolating precipitation estimates from gauges across
mountainous topography. Daymet is built using fewer rain gauges than PRISM, but it includes data from
the SNOTEL network. The extrapolation algorithm to create the gridded data set is based on the original
MTCLIM logic and weights each station by its distance from the target grid cell resulting in precipitation
estimates at 1-km resolution (Thornton et al., 1997). The NLDAS-2 and Gridmet data sets both use the
PRISM algorithm to perform topographic adjustments to daily gauge data. The NLDAS-2 data set is built
from the Climate Prediction Center gauge data that has been adjusted to topography using the PRISM algo-
rithm at a (1/8)° spatial scale (Higgins et al., 2000). Temporal downscaling is performed by matching the
daily precipitation patterns in the National Weather Service Stage II, 4-km hourly precipitation analyses
(Fulton et al., 1998). In this study, we use the hourly Princeton CONUS Forcing data set, which provides
a (1/32)° (~3-km) downscaled version of NLDAS-2 meteorological product over CONUS using 4-km Stage
IV and Stage II radar/gauge products (Beck et al., 2019; Pan et al., 2016). We use the downscaled version
of NLDAS-2 because the original NLDAS-2 resolution is too coarse to represent precipitation patterns in
the complex topography of the Sierra Nevada. Similar to the downscaled NLDAS-2 data set, the Gridmet data
set blends the temporal advantages of the original NLDAS-2 with the spatial advantages of PRISM to down-
scale the original NLDAS-2 data to a 4-km grid resolution using a climatically aided interpolation method
(Abatzoglou, 2013; Abatzoglou et al., 2018).
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ParFlow.CLM is run at an hourly time step using hourly inputs of precipitation, air temperature, relative
humidity, net shortwave radiation, net longwave radiation, atmospheric pressure, and wind speed in the x
and y directions. Hourly precipitation forcings are generated for each of the three precipitation data sets
(PRISM, Daymet, and Gridmet) by applying the temporal downscaling method of NLDAS-2, that is, we
apply the diurnal pattern of NLDAS-2 hourly precipitation to the other daily data sets. We obtain publically
available data from each of the four data sets for the water year (WY) 2016, 1 October 2015 to 30 September
2016. There is considerable variability in gridded precipitation estimates generated with these four methods
(Figure 2). The domain average precipitation for the year varies by more than 100 mm (Gridmet—433 mm,
NLDAS-2—466 mm, PRISM—522 mm, and Daymet—542 mm). The temporal distribution throughout the
year is relatively consistent between the data sets meaning that the discrepancy in annual totals is primarily
a result of differences in the volume of precipitation events at the domain average scale (Figure 2a).

For other meteorological forcings than precipitation, we use the Princeton CONUS Forcing data set at 3-km,
1-hourly resolution. We further downscale the hourly air temperature estimates to 1-km resolution by
applying a constant —6.5°C/km lapse rate. Watershed average forcing values are shown in the supporting
information (Figure S3).

We use several data sets to validate model performance. Streamflow is validated with United States
Geological Survey (USGS) stream gauge observations from stream reaches that have been minimally
impacted by humans (Falcone, 2011). Because most rivers in the Kaweah River watershed have been exten-
sively modified from their natural state, the California Department of Water Resources estimates unim-
paired or “full natural flow” for various rivers in California. Daily full natural flow data are calculated for
the Kaweah river at the Terminus dam (Figure 1b) by adjusting for gains and losses associated with retention
and diversion.

In mountainous terrain, snow is an important component of the hydrologic cycle. To validate simulated
snow processes, we use a reanalysis gridded snow water equivalent (SWE) and snow covered area (SCA) data
set covering the Sierra Nevada (Margulis et al., 2016). This 90-m, daily resolution reanalysis data set is gen-
erated with a Bayesian data assimilation technique using remotely sensed SCA (Margulis et al., 2016).
Finally, we obtain evapotranspiration (ET) estimates from the remotely sensed MODIS MOD16 global ET
product at 1-km? spatial and 8-day temporal resolutions (Mu et al., 2011). Model performance is assessed
using the mean relative error (MRE; Mean absolute error/mean of observed values), bias (B), and
Nash-Sutcliffe Efficiency (NSE) between simulated fluxes and the aforementioned observational data sets.

2.3. Integrated Hydrologic Model Development

2.3.1. ParFlow.CLM Model Framework

We use the ParFlow.CLM integrated hydrologic model code (Kollet & Maxwell, 2006; Maxwell, 2013;
Maxwell & Miller, 2005) to simulate the variably saturated subsurface flow, streamflow, and land surface
processes such as the energy balance. The ParFlow model solves the Richards’ equation in three dimensions
for variably saturated flow in the subsurface and simultaneously solves the kinematic wave approximation of
the shallow water equations at the land surface. Predefined river networks with user defined geometries are
not used in ParFlow, instead streamflow develops according to a uniform application of the kinematic wave
approximation to every cell in the domain. In this representation, horizontal grid resolution and elevation
values determine geometry of channel cross sections. ParFlow has been fully coupled with the Common
Land Model (CLM) 3.0 (Dai et al., 2003) to simulate the water and energy fluxes at the land surface. The
CLM portion of the code is coupled via the pressure and saturation in the top model layers of the ParFlow
grid, and ParFlow replaces the CLM soil moisture and runoff generation processes. We apply the
terrain-following grid formulation of ParFlow, which is best suited for mountainous terrain with high relief
(Maxwell, 2013).

2.3.2. Conceptual Model of the Kaweah River Watershed

The study domain encompasses an area of 12,276 km?” of highly variable terrain in the Kaweah River
watershed (Figure 1). The total relief in the study basin exceeds 4,000 m and includes the relatively humid
Sierra Nevada Mountains and the semiarid Central Valley. We conceptualize these geographic regions as
the two primary hydrologic systems. Across both systems, the surface soils are considered to be 2-m thick
and are divided into six layers with variable thicknesses consistently defined across the entire domain.
The soil overlays the 620 m thick bedrock aquifers that consist of nine computational layers.
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Parameterization of these layers is different for the mountain and valley aquifer systems according to our
conceptual geological model. The mountain system is characterized by higher precipitation, steep slopes,
shallow soils, and fractured bedrock geology. We conceptualize the subsurface as three distinct geological
layers with variable thickness and hydrologic properties: weathered saprolite, fractured bedrock, and less
fractured bedrock at depth. Thicknesses of subsurface layering, particularly the saprolite layer are uncertain
(Banks et al., 2009; Graham et al., 1997; Mohr et al., 2012). Our base model uses a 15-m thick saprolite layer
consistent with observations in similar granitic rock in California (Graham et al., 1997). The valley aquifer
system is a sedimentary basin with highly productive aquifers, relatively low precipitation, and a flat land
surface. While the total depth of the model is consistent for the two aquifers, we conceptualize the
Central Valley aquifer as a series of nine aquifer layers of variable thickness based on well core observations
and consistent with the Faunt (2009) geologic model of the Central Valley (supporting information Text S2).
The mountain and valley aquifers are considered to be hydrologically interconnected surface and ground-
water systems that respond differently to forcing and model parameters. In this view, the apparent differ-
ences in hydrologic responses are emergent properties of consistent fundamental physical processes that
operate across a varied terrain.

We focus simulations on the relatively shallow groundwater that is most likely to interact with surface pro-
cesses and use a total model thickness of 622 m. The bottom boundary as well as the north, east, and south-
ern boundaries of the model are considered no-flow boundaries. As this study domain is part of a larger
regional system, we allow a small flux (0.01 m/day) of water out of the western boundary to prevent the arti-
ficial accumulation of water in the Central Valley. Finally, to isolate the impact of precipitation data set
uncertainty on simulated hydrologic processes, we conceptualize the system as a quasi-predevelopment state
where the influence of groundwater pumping, stream impoundments and reservoirs, or surface diversions is
not considered. This is due to the paucity of water transfer data and the inability of the model to simulate
reservoir processes.

2.3.3. Summary of Model Parameterization

The Kaweah River watershed model has a horizontal grid resolution of 1 km? covering the area shown in
Figure 1. This grid size results in a domain with 124 columns and 99 rows and 15 variable thickness layers
(six soil and nine aquifer layers; in the Sierra Nevada region some adjacent computational layers are
assigned the same hydraulic parameters resulting in three types of bedrock layers—Table S1) covering the
top 622 m of the subsurface. At the land surface, slopes are derived from a 30-m digital elevation model
obtained from the National Elevation Data Set (Gesch et al., 2018) and Manning's roughness values are
assigned based on reference tables (Chow, 2009). Vegetation types are based on the USDA CropScape data
set and are aggregated to the IGBP classification scheme. The vertical discretization represents the surface
soils with high resolution (0.05-, 0.1-, 0.15-, 0.3-, 0.4-, and 1-m layers) where hydraulic conductivity and por-
osity are obtained from the POLARIS data set (Chaney et al., 2016). Model Layers 7 through 15 represent key
features of the aquifer region where their hydraulic conductivity and porosity parameters within the Central
Valley are assigned from drill core observations compiled by Faunt (2009). In the Sierra Nevada region, bed-
rock was parameterized based on a geologic map and reference table values (Jennings, 1977; Welch &
Allen, 2014) due to the lack of drill core observations of bedrock. To help decrease model run time, the
van Genuchten parameters are assigned as constant values of n = 2 and alpha = 3.5 m™" over the domain.
A more detailed description of the inputs and data processing steps are provided in supporting information
Text S2.

2.3.4. Numerical Experiments and Model Spin-Up

In this study, we perform three numerical experiments. Experiment 1 assesses the propagation of uncer-
tainty from precipitation to groundwater and includes four scenarios with constant physical parameteriza-
tions and consistent meteorological forcings except for hourly precipitation. In these scenarios, each
precipitation data set is resampled to 4-km spatial resolution while preserving the total precipitation
volume from its native resolution. For Experiment 2, we assess the impact of uncertainty in the subsurface
properties by changing the saprolite layer thickness. We create subsurface models with saprolite layers of
2-, 8-, and 15-m thickness and run each of the four precipitation data sets at 4-km resolution with each
subsurface parameterization, for a total of 12 model scenarios. Experiment 3 consists of a single scenario
generated by averaging the precipitation forcings of the four input data sets for each grid cell at a daily
scale. We compare results of Experiment 3 to the simulated hydrology from each individual data set
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(Experiment 1) as well as the mean of the simulated streamflow, ET, and SWE from the four simulations
with the four precipitation forcing data sets, all using the 15-m saprolite subsurface parameterization.

We initialize the hydrologic model through a two-step spin-up process to bring the subsurface storage into
dynamic equilibrium with each set of meteorological forcings. The first step applies a constant in time net
precipitation flux (P - ET) to the initially dry model system to fill the underground storage and create a rough
approximation of the flow network (Livneh et al., 2013). From this point, each ParFlow.CLM model scenario
is individually spun up to dynamic equilibrium by iteratively performing 1-year simulations using the hourly
meteorological forcing of WY2016 for that scenario (Ajami et al., 2014). WY2016 approximately represents
average precipitation and air temperature conditions and is recent enough to include several available
remote sensing and reanalysis products for model performance evaluation. Dynamic equilibrium for each
scenario is defined as the absolute percent change in subsurface storage value becoming less than 0.1% in
consecutive simulations (Ajami et al., 2015). The ParFlow.CLM model is optimized for massively parallel
computer systems (Kollet et al., 2010), and simulations were performed on a high-performance parallel com-
puting cluster using 35 processors. One year of simulation required ~850 service units, with a service unit
equivalent to 1 hr of time used by one processor.

2.4. Analysis of Uncertainty in Precipitation and Simulated Hydrology

We assess the uncertainty of precipitation data sets using the three-cornered hat (3CH) method (Gray &
Allan, 1974). The 3CH method estimates the variance from the ensemble of each data set by computing
the differences between multiple combinations of three data sets. In this article, we present the square root
of the variance from ensemble (o), analogous to the standard deviation with units of mm/day, and we refer to
this as the uncertainty in a particular data set in the rest of the text. The 3CH method is based on the assump-
tion that the errors are normally distributed, and the theory is described in the following. A given set of obser-
vations, obs;, contains two components, the true value (x) and the measurement error (e;): obs; = x + ¢; (Long
etal., 2014). When three sets of observations (i, j, k) exist, the difference between a pair of observations can be
written as follows:

obs; —obs; =x+e— (x+¢) =e —¢ (1)
The variance of the differences between observations (aijz) can be written as follows:
o; = oy + 0y — 2cov(e;, ¢) )

Finally, the individual error variances o,;* can be obtained through substitution and the variance of differ-
ences between two data sets (aijz).

A basic hypothesis of the original method is that all considered data sets are uncorrelated, and the covariance
in Equation 2 is zero. Given that our precipitation data sets are generated using many of the same input
gauges and assumptions, we use a modified version of the 3CH method that does not assume uncorrelated
data sets (Premoli & Tavella, 1993) and apply it to the four data sets (Anthes & Rieckh, 2018). By introducing
the covariances of the measured data and utilizing an optimization approach to solve the linear equations
(Premoli & Tavella, 1993), the complete covariance matrix between three or more measurements is esti-
mated, allowing for the uncertainty estimation with correlated samples.

We apply the 3CH method to the 4-km resolution precipitation data sets at two scales: a daily watershed
average scale where the uncertainty of the time series in Figure 2a is computed and a grid scale where the
uncertainty of a data set is calculated in a spatially distributed manner. The uncertainty values are not true
estimates of the data set's error because each data set has unquantified bias due to issues such as rain gauge
undercatch and sparse gauge networks. We also apply the 3CH method to several model output variables
including ET, potential recharge (R), soil moisture (6), and subsurface storage (S). We recognize that uncer-
tainty of output variables calculated with the 3CH method is not representative of a true uncertainty intro-
duced by model structure and parameters. We believe that these uncertainties are illustrative of the
uncertainty in simulated hydrologic variables caused by the uncertainty in precipitation inputs. The 3CH
method was selected because it considers covariances of correlated data sets in estimating uncertainty for
both spatially distributed or basin-averaged values of input forcings and simulated hydrology using a
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Figure 3. Uncertainty as predicted from the 3CH method for daily precipitation forcing data sets at 4-km spatial
resolution. The uncertainty (o) is presented for the (a) downscaled NLDAS-2, (b) PRISM, (c) Gridmet, and (d) Daymet
data sets.

single consistent approach. This method is advantageous over using a metric-like variance that does not
consider covariances between multiple data sets or the MCMC approaches that require a large number of
simulations for uncertainty quantification.

To analyze the propagation of uncertainty, we utilize the simulated grid cell saturation and pressure head to
calculate surface and subsurface fluxes for certain regions in the domain. We compute the net vertical and
lateral soil water fluxes from the soil zone (top 2 m of domain) at each grid cell using the simulated pressure
head and the Richards' equation (Maxwell & Miller, 2005). Additionally, we calculate run-on infiltration, the
infiltration of excess precipitated water from upslope that has reached a grid cell as overland flow and will
contribute to soil water storage, at an annual scale. Run-on is calculated as the total infiltration at the land
surface minus the precipitation. By setting negative values (representing runoff + interception) to zero, we
identify locations where infiltration is greater than precipitation indicating run-on infiltration. Finally, we
calculate the net groundwater flux at the watershed boundary (GW) as a residual of the water balance,
GW = P - ET - Q - dS, where dS is the change in total subsurface storage in the watershed and
GW = GWin — GWout. While this definition does not explicitly define GW flux as recharge to the Central
Valley aquifer, the elevation gradients in the model domain would result in GW influx to the Central Valley.

Finally, we apply the Diebold-Mariana (DM) test for predictive accuracy to test if there are statistically sig-
nificant differences in the simulation performance of the two scenarios from Experiment 3 (Gilleland &
Roux, 2015). The DM test is a statistical test for the null hypothesis that the forecast accuracy between
two simulated time series is equal compared to observations. We choose the DM test because it makes no
assumptions on the distribution of errors between simulated and observed values, and it incorporates tem-
poral autocorrelations.

3. Results and Discussion
3.1. Uncertainty of Precipitation Data Sets

The 3CH method was applied to every grid cell of the four daily precipitation data sets (NLDAS-2, PRISM,
Gridmet, and Daymet) at 4-km resolution to provide spatially distributed estimates of daily precipitation
uncertainty. Figure 3 presents the uncertainty for each data set. Across all data sets, the precipitation uncer-
tainty is highest in the Sierra Nevada mountains covering the eastern portion of the study domain. The loca-
tions of maximum uncertainty coincide with the locations of maximum annual precipitation in the domain
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Figure 4. Daily time series of simulated and observed snow water equivalent (a) and snow covered area (b). (c) Spatial distribution of annual differences between
simulated and observed SWE using the downscaled NLDAS-2 precipitation forcing. (d) Probability density functions of the difference between simulated and
observed SWE for the four precipitation forcing data sets from Experiment 1 using April 1, 2016 data.

(Correlation Coefficients: Daymet = 0.86; Gridmet = 0.89; NLDAS = 0.87; PRISM = 0.85). Uncertainties
reach 6 mm/day in some locations and highlight the importance of considering precipitation uncertainty
in hydrologic modeling studies. The spatial patterns and magnitudes of uncertainties are consistent with
the literature characterizing errors in gridded precipitation data sets who found the highest uncertainty of
~100-200 mm/year in the mountain regions (Henn et al., 2018; Lundquist et al., 2015). The uncertainty
values presented in Figure 3 are larger than previously reported values because uncertainty calculated
with the 3CH method includes the differences in the annual total, as well as day-to-day variability between
data sets.

3.2. Evaluation of Model Performance in Complex Terrain

We build confidence in the Kaweah River watershed model by comparing simulated hydrologic fluxes to
available observational equivalents during the WY2016 study period. We compare the simulated hydrology
to (1) estimates of daily unimpaired streamflow at USGS gauge locations, (2) data assimilation and remote
sensing derived daily snowpack properties, and (3) remotely sensed 8-day ET. The historical record of obser-
vation coincides with widespread human manipulation of the hydrologic system making observations of
dynamic steady-state rare. As a result, we focus our comparisons primarily on the Sierra Nevada region
where human impacts on the hydrologic system are limited. The majority of the Kaweah River watershed
is located in this less-impacted zone allowing reasonable comparison of simulated and observed variables,
particularly their spatial patterns and variation over the annual cycle. We compare simulations from
Experiment 1, forced with the four 4-km resolution precipitation data sets, to observed data sets. A summary
of performance metrics is presented in Table 2.

Comparisons between simulated and observed snowpack can provide assessment of the model's ability to
capture the energy budget and hydrologic processes in the snow-dominated Sierra Nevada mountains.
Figure 4 presents comparisons between the simulated SWE and SCA and estimates of the actual quantities
from the reanalysis data set (Margulis et al., 2016). As the Margulis et al. (2016) data set is masked at an
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elevation of 1,500 m, below which SWE is set to 0, we apply the same mask to the simulated SWE for com-
parisons. The annual cycle of snowpack accumulation and melting is represented in Figure 4a where the
solid black line is the reanalysis SWE values and the gray shaded region represents the range of simulated
values from Scenarios 1-4. The simulated annual pattern of daily SWE matches the reanalysis values with
bias and NSE values close to 1 for all data sets. The estimated actual SWE values from Margulis et al. (2016)
lie within the range of simulated values at all times throughout the year. The estimated actual SCA does not
fall within the range of simulated SCA values during the peak snowpack season (DOY 340-60) when the
model overestimates the snowpack (Figure 4b). Additionally, small amounts of estimated actual SCA remain
throughout the summer period that are not preserved in the simulations. We attribute these differences pri-
marily to the coarse resolution topography and air temperature inputs to our model. Small ravines can cause
shading effects that are not captured by the coarse resolution model.

We compare the spatial patterns of simulated snowpack to the reanalysis data set in Figure 4c using the
downscaled NLDAS-2 scenario. The simulated SWE from the downscaled NLDAS-2 scenario does not
contain systematic bias, and the locations where snow is under or overestimated are not correlated with
elevation, air temperature, or vegetation type (r* and correlation coefficient values are <0.3 in all cases).
Comparison of the reanalysis SWE data set to snow pillow observations found an average RMSE of approxi-
mately 0.1 m (Margulis et al., 2016), which contributes to the differences between our simulated SWE and
the reanalysis estimates. Figure 4d presents probability density functions (PDFs) of the differences between
simulated and reanalysis SWE on 1 April 2016 for each of the 4-km resolution precipitation data set scenar-
ios. The PDFs are consistent with results from Figure 4a in that the downscaled NLDAS-2 scenario has rela-
tively low bias compared to observations, whereas the Gridmet, PRISM, and Daymet scenarios have
successively higher bias in estimating SWE. This result is influenced by the SWE reanalysis data set gener-
ated by forcing a land surface model by topographically downscaled NLDAS-2 data set (Margulis et al., 2016).
Although we use another downscaled version of the original NLDAS-2 data set, finding that our simulated
SWE from the NLDAS-2 scenario provides the best match with the reanalysis data set does not necessarily
mean that NLDAS-2 is the best data set to use.

We compare simulated ET fluxes to remote sensing estimates from the MOD16 product (Mu et al., 2011). As
our model represents predevelopment conditions and does not incorporate irrigation, simulated ET is
assessed separately over irrigated croplands and “natural” vegetation (all land cover types except croplands
and urban areas). The 8-day annual pattern of ET from natural vegetation is shown in Figure 5a where the
solid black line is the MODIS observed value and the shaded region is the range of simulated values from
Experiment 1. The range of simulated ET encompasses the observed ET throughout the year in natural vege-
tation. For croplands, simulated ET matches the observations during the wet season, but it is lower than the
observed ET that is sourced from irrigation in summer. Figure 5c presents the differences between the total
annual values of simulated ET from the downscaled NLDAS-2 scenario and the MODIS data. In the natural
vegetation, the simulated ET is overestimated at the highest elevations and within riparian areas at all eleva-
tions. The riparian ET overestimation is likely due to the river channel width of 1 km, equal to the model
horizontal resolution as ParFlow.CLM does not consider local grid refinement. The PDFs of spatial differ-
ences between simulated and observed ET show that the peak differences in ET occur at negative values
(Figure 5d), an artifact of the irrigation impacting the observed ET.

In order to demonstrate streamflow (Q) performance from multiple simulations in a clear manner, Figure 6
presents flow duration curves (FDC) of simulated Q at three USGS gauge locations as well as the observed
FDC. A time series comparison is presented in Figure S4. We also present the simulated and observed Q
at the Kaweah Terminus dam where the observed Q is the full natural flow Q product from the CA
Department of Water Resources. The range of simulated Q from Experiment 1, at Gauges 1 and 2, encom-
passes the observations. Simulations underestimate daily Q at lower elevation sites, Site 3 and the Kaweah
Terminus dam, during the high flow regimes (exceedance probability < ~40%). We primarily attribute this
difference to unrealistic stream widths (1-km resolution) in the model that affects surface-groundwater
interactions along streambeds. ParFlow.CLM users often calibrate Manning's n values to account for this
problem (Bhaskar et al., 2015). We did not perform any calibration which might bias the model performance
under certain precipitation conditions as we are investigating the impacts of forcing data on simulated
hydrology. As an uncalibrated model, the Q simulations are not intended for streamflow or flood prediction,
and the model performance is reasonable for investigating the precipitation uncertainty propagation into the
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Figure 5. Time series of spatially averaged 8-day ET values as observed by MODIS or simulated in Experiment 1 for (a) Natural vegetation and (b) Croplands. The
gray shaded regions represent the variability in simulated values from four precipitation data sets in Experiment 1. (c) Spatial difference in annual values of
simulated and MODIS observed ET using the simulation forced with downscaled NLDAS-2 precipitation. (d) Probability density functions illustrate the
differences between spatially distributed annual ET observed from MODIS and model simulations in Experiment 1.

groundwater. We focus primarily on understanding how precipitation uncertainty propagates into
groundwater within the mountain system where the model is best validated. We recognize, however, that
model parameter choice will impact the hydrologic fluxes and states and may impact the propagation of
uncertainty into the groundwater system. The variation in simulated streamflow highlights how the
surface-groundwater interactions are impacted by both model parameters and precipitation forcing and
disentangling the effects of each merits future research.

3.3. Uncertainty Propagation From Precipitation to Groundwater

We applied the 3CH method to the simulated water budget components to estimate the uncertainty of out-
puts caused by variability in precipitation forcing. We summarize overall uncertainty results at the
watershed scale for the Kaweah Terminus watershed (located entirely in the Sierra Nevada portion of the
study domain, Figure 1b) and select elevation intervals across the domain. The calculated uncertainties

Figure 6. Simulated and observed flow duration curves for four validation locations. Gauge locations are shown in Figure 1.
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represent the uncertainty of daily fluxes and states caused by variability in
precipitation forcing. In Figure 7, we present o of the P forcing and simu-
lated hydrology from Experiment 1 scenarios. To ease comparison, o is
presented as relative uncertainty, normalized to the maximum o of that
variable. At the watershed average scale, the Gridmet precipitation data
set has the highest o even though the uncertainty in P is lower than other
data sets at a grid scale (Figure 3). This result is possible when individual
grid cells are not dramatically different from the other data sets, but the
watershed total P is very different relative to the other data sets

Figure 7. Relative uncertainty (o) calculated for the Kaweah River (Figure 2a). The PRISM data set has locations with considerably higher

Watershed using the daily water budget components of models in
Experiment 1: precipitation (P), root zone soil moisture (6),
evapotranspiration (ET), potential recharge (R), snow water equivalent

and lower P than the ensemble average that cancel out in the watershed
average. This result highlights the difficulty in selecting the “best” precipi-

(SWE), streamflow at Kaweah Terminus (Q), and change in total tation forcing data set because the strengths of each data set vary, and
subsurface storage (AS). In order to display several metrics on one chart, what is best depends on the objectives.

uncertainties are normalized to the precipitation forcing scenario with the

highest value of ¢ for that variable.

An important question in hydrologic modeling is whether high uncer-
tainty in precipitation forcing magnifies uncertainty of simulated water
budget components. Results of Experiment 1 demonstrate that it does
not (Figure 7). For example, the PRISM data set with the smallest ¢ for P does not result in smaller o for
other fluxes or storages. The Gridmet data set with the highest o for P, ©, ET, and AS has the lowest o for
SWE and Q, which are important metrics for water management. In mountainous watersheds, the SWE
magnitude depends on the spatial patterns of precipitation more than the watershed average values. For
snow accumulation, precipitation must fall in the high-elevation regions where air temperatures are below
the freezing point (Figure S4). Because streamflow in the Sierra Nevada region depends on snowmelt, the
lower o for SWE in the Gridmet scenario results in a lower o for Q. This result highlights the importance
of accurate spatial patterns in precipitation forcing for hydrologic simulation.

To demonstrate how uncertainty in precipitation forcing propagates from precipitation to groundwater, we
apply the 3CH method in a spatially distributed manner to the 1-km scale simulated outputs. Figure 8 pre-
sents the absolute uncertainty in P, ©, and ET binned across the elevation gradient in the study domain. The
spatial patterns of o in soil moisture do not match the spatial patterns of o in precipitation, and there are no
significant relationships between the o of precipitation and soil moisture at either the grid scale or the
elevation binned values (p values > 0.05). Spatial patterns of ¢ in soil moisture are related to topographic

Figure 8. Uncertainty (o) in surface water budget components averaged across 100-m elevation intervals. Precipitation
(P), root zone soil moisture (6), and evapotranspiration (ET) are from models in Experiment 1 using downscaled
NLDAS-2 (a), PRISM (b), Gridmet (c), and Daymet (d) precipitation forcings.
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Figure 9. Relative uncertainty (o) in water budget components averaged across 100-m elevation intervals. Precipitation
(P), root zone soil moisture (6), potential recharge (R), and change in groundwater storage (dSs,,) are from models in
Experiment 1 using downscaled NLDAS-2 (a), PRISM (b), Gridmet (c), and Daymet (d) precipitation forcings.

properties, particularly the slope of the grid cell, with p values << 0.05, although correlation coefficient
values are low (r = 0.12, 0.18, 0.15, and 0.14 for the downscaled NLDAS-2, PRISM, Gridmet, and Daymet
scenarios, respectively). The uncertainty in simulated ET is tightly correlated to the uncertainty in © with
correlation coefficients of 0.70, 0.91, 0.74, and 0.92 for the downscaled NLDAS-2, PRISM, Gridmet, and
Daymet scenarios, respectively. ET is the largest component of the water budget and by extracting water
from the soil reduces the water available for potential recharge.

Precipitation is connected to the subsurface water budget via groundwater recharge. Figure 9 presents the
binned average values of relative o in P, 6, R, and daily change in total subsurface storage in the saturated
zone (dSg,) across the elevation gradient. Generally, the o for precipitation increases with elevation,
except at the highest elevations (>3,000 m) where Gridmet is the only data set with increasing o. This
is not the case, however, for water stored underground. As discussed previously, the uncertainty in O is
related to the topographic conditions. For R to occur, sufficient © is needed to increase unsaturated
hydraulic conductivity and facilitate downward water flux. Although high-elevation regions during the
snowmelt have the largest R (Figure S6), the uncertainty patterns in R across the elevation gradient typi-
cally mimic the uncertainty patterns of 6 (r = 0.08, 0.77, 0.74, and 0.60 for the downscaled NLDAS-2,
PRISM, Gridmet, and Daymet simulations, respectively). Higher precipitation uncertainty in the semiarid
Central Valley region (Figure 3) of the downscaled NLDAS-2 data set causes the low correlation between
© and R for the downscaled NLDAS-2 data set. Groundwater recharge in semiarid regions is typically not
related to antecedent © (Scanlon et al., 2006; Schreiner-McGraw & Vivoni, 2017), so the low correlation for
the NLDAS-2 data set is expected. The uncertainty in dSg,; follows a similar trend with elevation to that of
R but is complicated by the geologic structure and subsurface hydraulic properties. The uncertainty in
dSsq is high at the mountain front where sharp contrasts in subsurface permeability create large head gra-
dients. The average elevation bin across the four scenarios of Experiment 1 for the maximum o of P ranges
from 2,800-2,900 m, while the maximum o of O is in 2,000- to 2,100-m bin, R is in 1,200- to 1,300-m bin,
and dSg,; is in 1,300 to 1,400-m bin. For the model structure applied in this study, as water flows down-
slope, topography-driven flow processes and convergence move the locations of uncertainty in simulated
hydrology downslope.
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Figure 10. Elevation binned values of mean net, lateral, and vertical soil water fluxes as well as run-on infiltration
simulated from models in Experiment 1 using downscaled NLDAS-2 (a), PRISM (b), Gridmet (c), and Daymet (d)
precipitation forcing. Symbols indicate bin values of lateral soil flux that a one-way ANOVA determined to be
significantly greater (+) or lower (—) than 0.

For further evidence that topography exerts control on the water budget, we present subsurface water fluxes
as average values binned by elevation for each of the four simulated precipitation scenarios (Figure 10). For
all the elevation bins and all P forcing scenarios, the soil net vertical flux is negative indicating net downward
flow into the saprolite layer. The downward soil vertical fluxes become larger as elevation increases causing
higher potential R, potentially a result of lower © and ET in these regions. Although average vertical soil
fluxes across all elevation bands are downward, at elevations below 3,000 m, many soil locations
(14.8%, 12%, 13.5%, and 15.1% of the Kaweah River watershed area in the Daymet, Gridmet, downscaled
NLDAS-2, and PRISM scenarios, respectively) in local topographic lows receive positive upward fluxes from
the saprolite layer (Figure S6).

High-elevation (>3,000 m) soil water contents are further depleted by lateral water flux out of soils. For ele-
vation bands between 1,500 and 2,500 m, there is typically a positive lateral flux of up to 250 m*/day per grid
cell into the soil. To compare the importance of subsurface and overland flow processes, we compute the
annual run-on infiltration to each grid cell. Figure 10 demonstrates that run-on infiltration is negligible
across all elevation gradients. These analyses suggest that the high © and ET uncertainty in the middle-
elevation range (1,500 and 2,500 m) is primarily controlled by lateral soil water redistribution from the high
elevations rather than moisture contributions from overland flow or deeper flow paths involving saprolite
layers. These results may be biased by the relatively coarse resolution of the model. Although streamflow
is generated in the small, upland portions of the watershed, lower-order watersheds are not accurately
represented at 1-km resolution. This representation likely impacts the surface-groundwater interactions
in these regions.

3.4. Impacts of Uncertain Subsurface Parameters

Given that subsurface flow patterns are governed by the conceptual geological model and subsurface para-
meters in integrated hydrologic models, we assess the impact of subsurface properties on the conclusions
drawn from Experiment 1 (sections 3.1-3.3). An important uncertainty in the subsurface parameterization
is the thickness of the highly weathered saprolite zone, which has been found to vary between 2- and 20-m
thickness in regions with similar geology (Banks et al., 2009; Graham et al., 1997). Previous research has
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Figure 11. (a-d) Elevation binned values of relative uncertainty (o) in root zone soil moisture (6), potential recharge (R), and daily change in total saturated
subsurface storage (dSsq,) for each of the scenarios in Experiment 2.

shown that this layer of higher permeability plays an important role in governing surface water-
groundwater interactions (Foster & Maxwell, 2019). We applied the 3CH method to the simulated
subsurface water budget, consisting of 6, R, and dSs,,, from each of the model scenarios in Experiment
2. Figure 11 presents the relative (o) (o normalized by the maximum of that variable) for each scenario
across elevation bins, similar to Figure 9. The elevation binned spatial patterns of o in simulated
subsurface water budget components are consistent across the three different saprolite layer thicknesses.
This result indicates that the saprolite thickness does not impact the propagation of uncertainty from
precipitation to groundwater in this watershed. Additionally, across all three saprolite scenarios, positive
soil water fluxes occur via lateral soil water flux from elevations >3,000 m to elevations between 1,500
and 2,500 m (data not shown). These results help build confidence in the role of topographic controls
on the propagation of uncertainty from precipitation to groundwater for different geologic structures
and not a single realization of the watershed.

Although changes to the saprolite layer do not systematically impact the propagation of uncertainty in
precipitation to groundwater, they do impact regional flow pathways in the groundwater system.
Figure 12 presents the partitioning of the precipitation into water budget components for the Kaweah
Terminus watershed where each flux is presented as a percentage of the P. Across all four precipitation for-
cing data sets, a decrease in the saprolite layer thickness reduces total subsurface storage and increases
annual ET and ET/P ratio. A thinner saprolite layer restricts potential recharge beneath the 2-m soil layer,
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Table 1

Number of Precipitation Grid Cells per Annual Precipitation Quantile
Obtained From Spatially Distributed Total Annual Precipitation Data Sets

Figure 12. Water budget partitioning as a fraction of the input precipitation for the Kaweah Terminus watershed using
the 12 scenarios from Experiment 2. Water budget components include evapotranspiration (ET), streamflow (Q),
groundwater flux out of the watershed (GW), and change in total subsurface storage over the watershed (dS).

which elevates soil moisture values and increases available water for ET. Across all Experiment 2 scenarios,
a decrease in the saprolite layer thickness increases GW flux out of the Kaweah Terminus watershed
particularly for the NLDAS-2 and Gridmet data sets where the differences are up to 4 times the value
from the 15-m saprolite layer. For the PRISM and Daymet scenarios, however, the differences in GW flux
out are less than 1% of the precipitation. Increases in GW outflux are caused by the shallower water table
in the mountain regions of the 2-m saprolite layer scenario, as well as larger potential vertical recharge
into fractured bedrock layers. The larger values of potential vertical recharge into bedrock are a result of
less lateral flow within the thin saprolite layer compared to thicker saprolite layers. It should be noted,
however, that vertical layer thickness can impact the accuracy of model
simulations, so by changing the model layer thickness small differences
in simulated fluxes may be observed.

For all saprolite layer thicknesses, there are consistent patterns in the

Range

water budget partitioning using different precipitation forcings. The ET
(Q flux) is lowest (highest) in scenarios where more precipitation occurs

Quantile  (mm/year) @ NLDAS-2 PRISM  Gridmet Daymet . . T

at higher elevations. For example, the Daymet precipitation data set has
0-10% 148-217 1,842 989 922 1,145 the highest fraction of precipitation at high elevations (Table 1) where
10-20% 217-248 664 1,189 1979 1,091 lower vegetation coverage and higher snow coverage lead to higher poten-
20-30%  248-286 592 981 2,340 997 . -8 geand higher s & igher p
30-40% 286-349 992 1163 1.495 1.253 tial vertical recharge. This higher vertical recharge results in more water
40-50% 349-427 1,518 1,073 1,129 1,198 entering the mountain flow paths where it eventually discharges as Q flux
50-60% 427-536 1,695 1,232 827 1,156 to the Central Valley.
60-70% 536-651 1,940 1,235 639 1,097
70-80% 651-737 2,036 1,331 714 829 . . . . L
80-90% 737-855 961 1.490 1.355 1.105 3.5. Merging Multiple Forcings or Merging Their Simulated Fluxes
90-100%  855-1258 36 1,593 876 2,405 Table 2 presents the performance metrics obtained for each of the precipi-
Note. Quantile ranges are derived from the combination of all four preci-  tation forcing scenarios, including the mean of the four data sets run with
pitation data sets. Bold values indicate the quantile with the highest num- the base case (15-m saprolite layer) model structure and the mean of the

ber of cells for each dataset.
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Table 2
Performance Metrics Comparing Simulated Fluxes to Observed Values for the Model Scenarios Comprising Experiment 3
Metric Daymet Gridmet NLDAS PRISM Mean of inputs Mean of outputs
Temporal ET (mm/8 days) Bias 0.91 0.80 0.87 0.95 0.92 0.88
MRE 0.32 0.32 0.31 0.31 0.32 0.31
SWE (mm) Bias 1.60 0.99 0.99 1.39 1.20 1.24
MRE 0.60 0.09 0.08 0.57 0.19 0.28
Q1 (m>/hr) Bias 1.48 0.83 0.72 1.21 1.01 1.06
NSE —0.35 0.54 0.35 0.13 0.44 0.41
MRE 0.90 0.59 0.64 0.69 0.58 0.60
Q2 (m>/hr) Bias 0.87 0.54 0.53 0.86 0.69 0.70
NSE 0.72 0.61 0.59 0.76 0.80 0.79
MRE 0.51 0.55 0.56 0.48 0.43 0.43
Q3 (m>/hr) Bias 0.71 0.40 0.36 0.58 0.49 0.51
NSE 0.36 0.23 0.08 0.37 0.31 0.31
MRE 0.63 0.66 0.72 0.58 0.56 0.61
Q Terminus (m3/ hr) Bias 1.45 0.63 0.63 1829 1.01 1.00
NSE —0.57 0.32 0.24 —0.21 0.30 0.29
MRE 0.82 0.54 0.58 0.69 0.52 0.58
Spatial ET (mm/year) Bias 0.88 0.78 0.85 0.92 0.89 0.86
MRE 0.14 0.15 0.14 0.13 0.13 0.13
SWE (mm/year) Bias 1.52 1.01 0.98 1.29 1.17 1.20
MRE 0.70 0.42 0.48 0.57 0.48 0.49

Note. Bold values indicate the scenario with the best performance for that metric.

simulated hydrologic fluxes. We compare simulated hydrology with the limited available observational data
sets by calculating performance metrics (MRE and B) for the Kaweah Terminus watershed using watershed
averaged values consistent with the temporal scale of observations, as well as spatially distributed annual
values. Consistent with discussion in previous sections, no individual forcing data set (Daymet, Gridmet,
downscaled NLDAS-2, or PRISM) consistently outperforms the others. For example, the downscaled
NLDAS-2 scenario has the best performance in simulating temporal patterns of SWE (B = 0.99,
MRE = 0.08), whereas the PRISM scenario performs best in simulating spatial patterns of annual ET
(B = 0.92, MRE = 0.13). The mean of simulated fluxes from the four precipitation forcing scenarios
(Experiment 1) generally improves model performance where B is closer to 1, and a low MRE indicates
improved prediction of observed fluxes. In the study watershed, however, running a single simulation
with the mean of the precipitation forcing data sets results in the best performance metrics compared to
performing four simulations and averaging the simulated results. Results from the DM test of equal
forecast accuracy reveal that the mean of inputs scenario has statistically significant improvements in
performance (p < 0.05) for the time series of SWE and streamflow at Gauges 1 and 2. While the
performance improvement gained by taking the mean of the forcing data sets is small, reduction in the
computation time makes this strategy much more appealing. This finding is contrary to the previous work
that showed that merging the simulated hydrologic fluxes improves model performance (Zhu et al., 2019).

We attribute this result, in part, to the sensitivity of simulated hydrologic fluxes to changes in P.
Figure 13 illustrates the sensitivity of water budget components (Q, ET, dS, and GW) to changes in mean
annual P relative to the downscaled NLDAS-2 scenario for the Daymet, Gridmet, PRISM, and mean for-
cing scenarios. A 1% change in watershed annual P results in a greater than 1% change in simulated Q,
dS, and sometimes GW, while ET and GW flux from some scenarios are less sensitive and fall below the
1:1 line. Uncertainties in the P forcing magnify the sensitivity of the simulated fluxes more than linear
increases or decreases in the P data. Additionally, the mean of multimodel ensemble approach works best
when each model provides an independent estimate of a predicted output (e.g., streamflow) (Abramowitz
et al., 2018). In our experiments, the forcing data are more independent than the simulations from four
ParFlow.CLM models that are likely have similar biases due to the same model structure and parameters.
Therefore, using the mean of the available precipitation data sets as the model forcing results in the best
performance metrics.
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4. Conclusions

This study explores the sensitivity of water budget partitioning to variable
precipitation forcings as simulated by an integrated surface water-
groundwater model. We present a hydrologic model of the Kaweah
River watershed conceptualized to represent a dynamic steady-state con-
dition without human modification. The model captures important
hydrologic processes in the study region such as seasonal variations in
snowpack, streamflow duration curves, and spatially distributed ET and
SWE. By applying the 3CH method, we quantify spatial patterns of the
uncertainty in precipitation data sets and find that uncertainty reaches
6 mm/day in some mountainous locations. We also apply the 3CH
method to the simulated hydrology. Results of the 3CH method applied
to the watershed average values indicate that high uncertainty in precipi-
tation forcing results in high uncertainty in soil moisture and ET, but not
SWE or streamflow (Figure 7). The contrasting responses of several simu-
lated variables highlight the difficulties in selecting a single best precipita-
tion forcing data set.

By using an integrated hydrologic model, we quantify the propagation of
. . . . uncertainty in precipitation forcing to uncertainty in the simulated
Figure 13. The sensitivity of simulated annual fluxes to changes in annual . . . . .
o . . . groundwater flow and storage. Soil moisture is a key hydrologic variable
precipitation using model scenarios from Experiment 3. The percent . .
change in watershed average precipitation between the base case that controls both ET and potential recharge. We find that the uncertainty
downscaled NLDAS-2 scenario and the Gridmet, Mean of Inputs, PRISM,  in simulated root zone soil moisture is not correlated to the precipitation
and Daymet is displayed on the x axis from left to right, respectively, and  uncertainty. Rather, it is correlated to topographic properties including
the corresponding percent change in hydrologic fluxes relative to the the slope and elevation. An analysis of the soil water flux demonstrates
downscaled NLDAS-2 scenario is displayed on the y axis. . . . .
that topographically enhanced lateral flows in the soil layer are responsi-
ble for redistributing the uncertainty in precipitation forcing downslope.
As a result, the uncertainty in both potential recharge and groundwater storage changes is decoupled from
the uncertainty in the precipitation forcing (Figure 9). Indeed, although majority of the potential ground-
water recharge occurs at the highest elevations in response to snowmelt, the largest uncertainty in potential
recharge is located downslope in response to topography.

We find that modifying the critical zone parameterization does not alter the role of topography in propagat-
ing uncertainty to groundwater. This is demonstrated with consistent results between Experiment 1 and
Experiment 2 simulations where the thickness of saprolite layer is changed. Assessing the patterns of uncer-
tainty in hydrologic variables across the elevation gradient shows that the uncertainty in precipitation is
highest for the 2,800- to 2,900-m elevation bin, while soil moisture, ET, and potential recharge have the high-
est uncertainties in the 2,000- to 2,100-, 1,700- to 1,800-, and 1,200- to 1,300-m elevation bins, respectively.
This finding remains true for all realizations of the subsurface tested because soil water redistribution in
the soil layer (top 2 m of model domain) is the primary mechanism redistributing the uncertainty in soil
water balance processes downslope.

When precipitation uncertainty is prevalent in available forcing data sets, a common approach is to consider
merging forcing data sets or merging simulated outputs using an ensemble approach. We assess which
approach works best for an integrated hydrologic model in the study domain. By comparing the simulated
hydrology to available observational data sets, we quantify the performance of different modeling
approaches. We find that generally, merging either the input precipitation data sets or the simulated hydrol-
ogy from multiple simulations with different precipitation forcing results in improved overall model perfor-
mance. In the study domain, an unexpected pattern emerges where the simulation with merged input
forcings shows better model performance than the mean of simulated hydrologic fluxes from multiple sce-
narios. We attribute this to the high sensitivity of hydrologic fluxes and states to changes in precipitation.
A 1% change in mean annual precipitation in the study domain results in a greater than 1% response in
streamflow, subsurface storage changes, and in some cases, groundwater recharge from the Kaweah
Terminus watershed to the Central Valley aquifer. Furthermore, the difference in performance statistics
is related to the model independence in each ensemble (i.e., forcings or outputs). As a result of
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independence in the model forcings and using a consistent model structure, merging the multiple precipita-
tion data sets provides the best model performance with shorter simulation time. Therefore, averaging of
multiple precipitation data sets should be considered when developing a hydrologic model when these data
sets are available.
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